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Abstract 
In this paper, we consider the problem of feature selection 
and classifier fusion and discuss how they should be 
reflected in the fusion system architecture. We employed 
the genetic algorithm with a novel coding to search the 
worst performing fusion strategy. The proposed algorithm 
tunes itself between feature and matching score levels, 
and improves the final performance over the original on 
two levels, and as a fusion method, it not only contains 
fusion strategy to combine the most relevant features so as 
to achieve adequate and optimized results, but also has 
the extensive ability to select the most discriminative 
features and their appropriate classifiers. Sparse 
Representation Classifier (SRC) and Nearest Neighbor 
classifier with euclidean distance, mahalanobis distance, 
cosine distance and correlation distance are exploited to 
calculate all the similarity measures. Experiments are 
provided on the FRGC database and show that the 
proposed method produces significantly better results 
than the baseline fusion methods. 
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1 Introduction 
In recent years, there are many research works and studies 
of multiple classifier systems. It has been frequently 
demonstrated that combing classifiers can offer significant 

classification performance improvement for a number of 
non-trivial pattern recognition problems [1].  
Fusion strategies can be roughly classified into three main 
categories: fusion at an early stage, fusion at a later stage 
and hybrid fusion. Many systems that integrate 
information at an early stage are believed to be more 
effective than those that perform integration at a later 
stage. Therefore, while it is relatively more difficult to 
achieve in practice [2], fusion at early stage has drawn 
more attention in recent years. There exist two types of 
early fusion: fusion at data level (for example 3D image 
[3] or 3D/2D image [4]), and fusion at feature level [2]. In 
fact, at the feature level the concatenated feature vectors 
may contain noisy or redundant data, thus leading to 
decreased performances of the classifier [5]. In this case, 
feature selection procedure is an important step. It is 
essentially an optimization problem that involves 
searching within the space of possible feature subsets to 
find one subset that is optimal (or near-optimal) with 
respect to a certain criterion. Several search strategies 
have been put forward and can be classified into three 
categories: optimal, heuristic, and randomized. Exhaustive 
search is the most straightforward approach to optimal 
feature selection and it is guaranteed to find the optimal 
subset. However, since the number of possible subsets 
grows exponentially, exhaustive search becomes not 
feasible and impractical even for moderate feature 
numbers. The only optimal feature selection method, 
which avoids the exhaustive search, is based on the branch 
and bound algorithm [5, 6]. Best individual features, 
sequential forward selection (SFS) and sequential 
backward selection (SBS) [5] are three well-known 
heuristic suboptimal feature selection schemes. 
Combining SFS and SBS gives birth to plus l-take away r 



feature selection. A generalization of the plus l-take away 
r method is twofold: Sequential forward floating search [5, 
7] and sequential backward floating search [5, 8], where l 
and r are determined automatically and updated 
dynamically. Evolutionary algorithms [1] are random 
search algorithms. Among them, genetic algorithms (GAs) 
include a subset of evolutionary algorithms focusing on 
the application of selection, mutation, and recombination 
to a population of competing problem solutions. 
Obviously, GAs are prime candidates for random 
probabilistic search algorithms within the context of 
feature selection.  
In fusion at later stage, there are three fusion sub-levels: 
score match level [9], rank level [10] and decision level 
[11]. Kittler and al. [12] presented and developed a 
common theoretical framework for these combining 
classifiers. At the first level, similarity scores generated by 
classifiers are combined by various techniques [13], for 
example, Sum Rule, Product Rule, etc. Gabrys and al. [14] 
developed a weighted soft combiners based on genetic 
algorithms. At the second level, sorted lists computed by 
classifiers are merged based on different approaches such 
as Borda Count and Logistic Regression [15]. At the third 
level, all the candidates of the classifiers are fused by 
adopting several methods [16], i.e., Majority Vote. The 
last category contains intermediate fusion schemes, such 
as serial fusion and multilevel fusion. The main 
motivation of the serial architecture [16] is to filter out the 
most similar K classes using a simple classifier and then 
to feed these K classes into a more complex and powerful 
second classifier. On the other side, there are few works 
that describe multilevel fusion. In [17], fusion is 
introduced in both feature level and confidence level.  
In this work, we develop a common framework for 
selecting features, classifiers and combining the latest; we 
confirm that many existing schemes can be considered as 
special cases of our generic fusion scheme. We show that 
our fusion method is able to obtain a global sub-optimal 
solution while lessening the complexity of calculation. 
Other contributions of this paper are: the use of genetic 
algorithm with a novel coding strategy and sequential 
backward floating search for effective feature selection; at 
the same time an optimal fusion strategy scheme is 
generated. Furthermore, an appropriate classifier for each 
feature type was determined automatically. 
The remainder of this paper is organized as follows: a 
framework for feature and score matching levels fusion is 
introduced in section2, and section 3 presents 
experimental results. Section 4 concludes the paper. 

2 Optimal fusion scheme selection 
framework 

The proposed framework is shown in Fig. 1. It is based on 
genetic algorithm, using a novel coding technique, to 
search the optimal fusion scheme. 

2.1 Framework Overview 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 - Algorithm Overview 

 
The proposed framework consists of four steps. In the first 
step, Data Preprocessing, the data validity and integrity 
are checked and noisy data is rectified. The second step 
consists to features extraction. For measurement cost and 
classification accuracy, Linear Discriminant Analysis 
(LDA) is used to reduce the dimensionality for each 
feature. The third step lead to: 1) finding one subset of 
features that is optimal with respect to the corresponding 
fusion scheme and 2) determining, automatically, an 
appropriate classifier for each feature type. So, all features 
are coded to form individual “chromosomes” according to 
the model described in the section 2.3. Furthermore, these 
chromosomes are used by a genetic algorithm [18] to 
encode the trial solution for the current problem. Iterative 
selection, crossover, and mutation were used to make 
evolve a new population. At each new generation, a new 
set of chromosomes is produced, using the fittest genes of 
the previous generation, for a better solution. Assessment 
of the satisfactory degree of this solution, encoded as 
individuals, is reflected in the fitness. In fact, fitness 
corresponds to performance rate of each fusion strategy 
represented by individual chromosome. This fitness is 
calculated according to eq. (2) taking into account 
different classifiers. Figure.2 illustrates this process. Also, 
the individuals with higher fitness have a high probability 
of being selected and producing offspring. The crossover 
operator produces better offspring by exchanging the 
characteristics of the parents. This enables the most 
efficient characteristics to be concentrated in the same 
individual. The mutation operator randomly changes the 
genetic representation of an individual and tends to inhibit 
the possibility of converging to a local optimum, rather 

Chromosome Selection

Mutation 

Crossover 0 1 11 

0 0 1 1 

0 1 0 1

1 1 1 0 1 0 1 0

0 0 1 0

0 1 0 1 

Data 
Information

Data 
preprocessing  

Feature 
Extraction

Chromosome 
Coding Strategy 

Optimal Fusion Scheme 

Post-processing 



than the global optimum. The evolution is carried out until 
a desired solution is arrived, or a pre-specified number of 
iterations are completed. The final solution with higher 
fitness represents the final fusion strategy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 - Genetic algorithm optimization for feature, 
classifier and strategy selection 

 
The last step can generate an optimal final fusion strategy. 
In fact, SBFS [5] is used to select the best features in new 
concatenated features (See Section 2.3). Furthermore, if 
the final strategy represents a matching score level 
strategy, we assign new different weights following eq.(3) 
to ameliorate the performance rate. 

2.2 Performance Rate 
The performance rate is calculated for each chromosome. 
So, all features output different scores. Min-Max 
Normalization [2] is used to map the matching scores to 
the range of [0, 1]. At the strategy selection stage, for each 
g in the gallery set, we compute a similarity score Sg,f by 
classifier using each feature  f with the probe. All these 
similarities Sg,f  are then sorted  in a descending order. We 
assign to each score Sg,f a weight wg,f which is a function 
of its ordered position pg,f. Specifically, the weight wg,f is 
defined as: 

 
௚,௙ݓ                        ൌ ݂ሺ݌ሻ ן ln ሺ ௚ܰ/݌௚,௙ሻ.                   (1) 
 
where Ng is the number of the subjects in the gallery.  
The matching score, in the strategy selection stage, 
between the g in the gallery and the probe is: 
 

ܵሺ݃ሻ ൌ ∑ ௚,௙ݓ
௙ א௙௘௔௧௨௥௘௦ . ܵ௚,௙ .                   (2) 

This weighting strategy gives more importance to the 
scores ranked at the first positions and aims to discard 
wrong matching of each feature in test by assigning a 
lower weight to its corresponding similarity with a gallery 
sample.  
At the post-preprocessing stage, we use another Genetic 
Algorithm to assign a weight Pg,f to scores of a particular 
feature. The final matching score between g in the gallery 
and the probe is: 
 

 ܵሺ݃ሻ ൌ ∑ ܲ௚,௙. ௚,௙ݓ
௙ א௙௘௔௧௨௥௘௦ . ܵ௚,௙ .             (3) 

 
The probe face is recognized as the one in the gallery 
which obtained the highest final score according to (3). 

2.3 Feature subset and Strategy Selection 
We propose a novel coding strategy to select 
simultaneously the efficient feature, the best classifier and 
the optimal fusion scheme. This coding strategy consists 
to divide the chromosome into two parts: Part A and Part 
B (See Figure.3). Given N features, Part A has N gene 
positions that correspond to each feature, and represented 
with integer values: 1 implies that the feature is active and 
used in feature level fusion, 0 implies that the feature is 
active and used in score level fusion, and -1 implies that 
the feature is inactive. Part B codes the fusion model that 
depends on the number NF of active features at feature 
level fusion. In this model, we generate all possible 
combinations. However, we can’t create a strategy that 
contains a single feature and we consider that 
combinations obtained by permutation are equivalent. Part 
B is also composed of two parts P1and P2: P1 refers to the 
model M and P2 associates the features in this model.  
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3 - Example of chromosome coding strategy 

 
An example of this representation is illustrated in Figure 
3. With a Part A as 1011111-11, we can generate 4 models 
Mi, with i in {1..4}: M1=(7, 0), M2= (2, 5), M3= (3, 4), 
M4=(2, 2, 3). The number of the selected model is 
represented in the chromosome by its binary code: the 
model M2 is selected and represented by (010) and two 
vectors V1, V2 are created by concatenation, V1= [F1, 
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F3] and V2= [F4, F5, F6, F7, F9]. The fusion strategy 
corresponds to a score matching level with V1, V2, and 
F2. The fitness of this strategy is calculated based on 
performance rate described in previous section. Stochastic 
universal sampling [19] is used to select best 
chromosomes “strategies”. Uniform crossover is used only 
on Part A and random mutation may occur on Part A or 
Part B of chromosome. Stopping criteria chosen for 
problem solving is selected from these conditions: 1) 
either the maximum number of iterations over the terminal 
number max of generations, 2) the best fitness value 
beyond the value of fitness limits. 

3 Experimental Results 
The proposed algorithm is tested in a face recognition 
application, where the objective is to find an optimal 
subset of features and their adequate fusion strategy. 

3.1 Database, Experiment Settings and 
Feature Extracted  

The FRGC [20] database was chosen for our experiments. 
Each face data consists of one 3D face model and its 
registered 2D color image. The 3D face models are first 
cropped with a sphere of radius of 80 mm centered at the 
nose tip and preprocessed with techniques in [21]. In order 
to avoid the impact of registration errors in our analysis, 
we used a manual registration method, namely Region 
based Iterative Closet Point (R-ICP) [22] for 3D face 
model. . As 2D color texture information is densely 
registered to its corresponding 3D face data, the 
previously cropped and registered 3D face model has also 
its 2D texture counterpart. The positions of both two eye 
inner corners are further used for rotation normalization. 
Finally, all the 2D color faces are converted to the gray-
level, and resized to 80×92 pixels. 
FRGC v1.0 dataset is used for estimating LDA parameters 
while FRGC v2.0 is utilized for training and test; 116 
subjects having each 4 face models were selected from 
FRGC v1.0 to train subspace based approaches such as 
estimating LDA parameters. One face scan (3D+2D) with 
a neutral expression was selected from each subject to 
make a gallery of 410 subjects (gallery database) and 3541 
face scans were treated as probes and were separated to 
build training database (2332 face scan) and test database 
(1209 face scan). The test database is divided into two 
subsets according to their expression labels. The first 
subset contains face scans with the neutral expression 
(713 probes), and the other one with face scans producing 
non-neutral expressions (496 probes). In the second step, 
we have used 2D and 3D features. Geometric features 
include normal (Nor Vec), binormal (BiN Vec), tangent 
vector (Tang Vec) [23] and curvature. Four categories of 
curvature-based features are extracted. The first two types 
rely on main directions corresponding to maximum (Max 
Curv) and minimum (Min Curv) curvatures [24]. The last 

two are their derivatives, i.e., the mean (Mean Curv) and 
Gaussian (Gauss Curv) curvatures. We further 
investigated another type of 3D feature based on the 
anthropometric (Anthr Mes) approach which advocates 
extracting a signature from some anthropometric points 
considered the most relevant. Three different features are 
extracted from the 2D texture images. The first one is the 
simple pixel-based method that encodes grayscale 
intensity (Intensity) values into a vector. The second one 
is a non-parametric feature namely Local Binary Patterns 
(LBP) [25]. The most important properties of LBP are the 
tolerance against the monotonic illumination changes and 
its computational simplicity. The third feature is extracted 
by Gabor filters (Gabor) [26] which are spatially localized 
and selective to spatial orientations and scales. Five 
different frequencies and eight equally spaced orientations 
are utilized to generate Gabor kernels. 
 For evaluating the proposed approach, experiments were 
designed in identification task with training and test 
stages. The training stage outputs the optimal fusion 
strategy. The same gallery database is used in all stages. 
In training stage, we achieve one experiment using gallery 
database and training database. The training database 
contains neutral and non neutral expressions. In test stage, 
three experiments were carried out: Neutral vs. Neutral, 
Neutral vs. Non-Neutral, and Neutral vs. All. In Neutral 
vs. Neutral and Neutral vs. Non-Neutral, only the neutral 
and non-neutral probe subsets were used.  

3.2 Classifiers 
Two classifiers, Sparse Representation Classifier and 
Nearest Neighbor Classifier were used in our experiments. 
 
Sparse Representation Classifier: Sparse representation 
for signal classification (SRSC) is proposed in [27]. SRSC 
incorporates reconstruction properties, discriminative 
power and sparsity for robust classification. In [28], a 
general classification approach for (image-based) object 
recognition is proposed based on a sparse representation 
computed by L1-minimization. The method based on 
sparse representation can often achieve high performance 
based on a data dictionary [29]. 
 
Nearest Neighbor Classifier: Euclidean distance (4), 
Mahalanobis distance (5), cosine distance (6) and 
correlation distance (7) are introduced, and their 
performances are also compared in our experiments. A 
description of each of these metrics can be found below: 
 

݀ሺݔ, ሻଶݕ ൌ ሺݔ െ ݔሻሺݕ െ  ሻᇱ ,                       (4)ݕ
 

݀ሺݔ, ሻଶݕ ൌ ሺݔ െ ݔଵሺିܥሻݕ െ  ሻᇱ ,                    (5)ݕ
 

݀ሺݔ, ሻݕ ൌ 1 െ ൫௫ ௬ᇲ൯
ሺ௫ᇲ௫ሻభ/మሺ௬ᇲ௬ሻభ/మ  ,                      (6) 



݀ሺݔ, ሻݕ ൌ 1 െ ሺ௫ି௫ಾሻሺ௬ି௬ಾሻᇲ

൫ሺ௫ି௫ಾሻሺ௫ି௫ಾሻᇲ൯భ/మ൫ሺ௬ି௬ಾሻሺ௬ି௬ಾሻᇲ൯భ/మ .      (7) 

 
where x and y are two rows vectors to compare, C is the 
covariance matrix, xM is the mean value of x, and yM is the 
mean value of y. 

3.3 Results and Analysis 
First, LDA is applied to reduce dimensionality of all 

features in FRGC v2 database. In order to use the genetic 
algorithm in training stage, we define some parameters. 
Part A of chromosome is organized as follows: {Tang 
Vec, BiN Vec, Nor Vec, Gauss Curv, Max Curv, Mean 
Curv, Min Curv, LBP, Gabor, Anthr Mes, Intensity}. Five 
similarity measure of each feature was computed with 
SRC classifier (SRC), 1-Nearest Neighbor with euclidean 
distance measure (1-NN-ED), 1-Nearest Neighbor with 
mahalanobis distance measure (1-NN-MD), 1-Nearest 
Neighbor with cosine distance measure (1-NN-CosD), 1-
Nearest Neighbor with correlation distance measure (1-
NN-CorrD). The selection algorithm used a population of 
50 chromosomes. The mutation rate was set to 0.1 and the 
GA was stopped after 100 generations for experiment.  

Table 1.  Rank-one recognition rate of individual type of feature 
and classifiers selected by the GA for the best fusion strategy 

Classifier Features 
 

SRC 
 

Gabor 81.97 Bin  Vec 73.12
LBP 77.01 Anthr Mes 58.97

Intensity 53.35   
1-NN-
CorrD 

Tang  Vec 82.22   
Mean-Gauss 74.16   

 
The final fusion strategy generated by training stage is 
coded as follows. Part A: 0,0,-1,1,-1,1,-1,0,0,0,0, Part B: 
[P1: 001, P2: 4, 6]. It consists firstly to concatenate {Mean 
Curv, Gauss Curv} in vector V1. Secondly, we use this 
optimal subset {V1, Tang Vec, BiN Vec, LBP, Gabor, 
Anthr Mes, Intensity} in score level fusion. The post 
processing step is used to optimize the final fusion 
strategy. Firstly, SBFS is used to select the best feature in 
the new concatenated vector V1. Secondly, new weight 
processing eq. (3) is used. The final recognition rate is 
95.67% in training stage. In test stage, we apply the final 
fusion strategy. In this case, the final recognition rate is 
97.27% using Neutral vs All experiment. Table 2 
compares the proposed fusion strategy with other fusion 
approaches (simple sum rule (baseline method), Gökberk 
and al.  [7], Mian and al.[2]). The performance of each 
feature and classifiers selected by the GA is displayed in 
Table1. Others experiments (Neutral vs Neutral and 
Neutral vs Non Neutral) are presented in Table 3. In all 
experiments, our method improves rank-one recognition 
accuracy as compared with other methods in three aspects: 
selecting the most discriminative features, selecting 

appropriate classifier and proposing an optimized fusion 
strategy.  
 
Table 2.  Identification Results Using Neutral vs All 
 

Method Training Phase       Test Phase
Simple Sum Rule       _                           94.13% 
Gökberk and al.  [7]       _                           95.28% 
Mian and al.[2]       _                           94.71% 
  
Our approach 95.67%                       97.27% 

Table 3.  Identification Results (Rank-one) Using Neutral vs 
Neutral (N-N), Neutral vs NonNeutral (N-nonN)  

Method N-nonN      N- N 
Simple Sum Rule 91.33%    97.76%
Gökberk and al.  [7] 92.75%    97.88%
Mian and al.[2] 90.73%    97.76%
   
Our approach 95.16%    99.16%

 

4 Conclusions and Future Works 
In this paper, we developed a common framework for 
optimal fusion strategy selection. The proposed 
framework, based on a genetic algorithm and a novel 
associated coding strategy, generates automatically a 
subset of best features, an appropriate classifier for each 
feature, and an optimal fusion strategy scheme. 
Experiments are provided on the FRGC database and 
show that the proposed method produces significantly 
better results.  
In future works, we can integrate other features and 
classifiers to improve the potential of our method. We 
intend also to extend this fusion scheme in order to 
generate the best model for each application. We plan as 
well to analyze the impact of the quality of information on 
fusion strategy.  
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