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Abstract 
In this paper, we propose an optimisation method based 
on a multi-objective Genetic Algorithm (GA) for the 
design of orthogonal filter banks in an image coding 
scheme. A parameterization is used to achieve perfect 
reconstruction orthonormal FIR filter banks with a first 
order regularity. We search the optimal parameter set 
according to the coding gain, frequency selectivity and the 
group delay characteristics. Particularly, to design near 
linear phase filter banks, the group delay flatness in the 
filter pass-band is introduced as an objective to be 
minimised. We formulate the optimization problem as 
multi-objective and we use the Non-dominated Sorting 
Genetic Algorithm approach (NSGAII) to solve this 
problem by searching solutions that achieve the best 
compromise between the different objectives criteria, 
these solutions are known as Pareto Optimal Solutions. 
From experimental results, our new optimal filter banks 
are shown to outperform significantly the Daubechies 
orthogonal filter banks for the majority of test images.  

Keywords 
orthogonal filter banks, multiobjective optimization, 
wavelet image coding. 

1 Introduction 
In a wavelet image coding scheme, the choice of filter 
banks is a key problem which affects both the system and 
the performances of compression. Generally, optimal filter 
banks are selected for image coding systems from a 
library of filter banks designed for signal processing 
purposes using some metrics related to such systems [1]. 
While the most suitable filter banks for image coding 
belong to the biorthogonal class of filter banks, the 
orthogonal Daubechies filter banks belong to the class of 
wavelet filter banks used most often in image coding 
applications. Orthogonal filter banks have some 
interesting properties, such as energy preservation, that are 
often used in the design of quantization procedures and bit 
allocations algorithms.  

These properties make the orthogonal filter banks very 
attractive, but in the case of wavelet FIR filter banks, 
orthogonality is non-compatible with phase-linearity, 
which seems to be relevant too. A solution of this 
drawback is to design orthogonal filter banks as 
symmetric as possible. This can be achieved by the 
optimization of the group delay flatness in the orthogonal 
filter banks. To introduce flexibility in the design, the 
group delay flatness can be considered only in passbands 
instead of the full band since phase distortion is not 
important in stopbands.  This allows the investigation of a 
larger region of solution space where better performing 
filter banks can be obtained. 
In this work, we are interested in the design of orthogonal 
filter banks (FBs) for image coding. The optimal FBs 
design approach presented in this work is a continuation 
and improvement of earlier work in the field. Perfect 
reconstruction (PR) filter banks with a first order 
regularity requirement are constructed using the 
parameterization proposed in the reference [3]. In 
addition, the design of optimal PR-orthogonal FBs for 
image coding should consider several criteria of practical 
significance related to such application, namely: energy 
compaction capabilities or coding gain, frequency 
selectivity, and phase linearity.  
In fact, the design problem requires simultaneous 
optimization of three objective functions with different 
individual optima. Practically, there it is no possible 
solution that satisfies maximally all the objective 
functions. To solve this problem, a multi-objective genetic 
approach called NSGAII [6] is used to find Pareto optimal 
solutions that make all possible tradeoffs among 
competing objectives through evolution.  
This article is organized as follows. In section 2, we 
define the design criteria of filter banks in image coding 
applications. The optimization problem formulation and 
the multi-objective GA used for designing filter banks are 
presented in section 3. In section 4 we evaluate the 
performances of compression of the optimized filter bank 
for a set of test images. Finally, section 5 concludes the 
paper with a summary of our work. 



2 Design criteria 
2.1 PR condition 
Figure 1 shows a two channel filter bank where H0(z) and 
H1(z) are the analysis low and high-pass filters, 
respectively, and G0(z) and G1(z) are the synthesis filters. 

 

 

 

 

 

 

 

 

To design a PR orthogonal filter bank, ݔොሺ݊ሻ ൌ  ሺ݊ሻ, theݔ
analysis and synthesis filters have to satisfy the following 
equations: 

  ݄ଵሺ݊ሻ ൌ ሺെ1ሻሺ௡ାଵሻ݄଴ሺܮ െ ݊ െ 1ሻ
݃଴ሺ݊ሻ ൌ ݄଴ሺܮ െ ݊ െ 1ሻ               
݃ଵሺ݊ሻ ൌ ݄ଵሺܮ െ ݊ െ 1ሻ               

     ݊ ൌ 0, … , ܮ െ 1         (1) 

Where L is the length of the filters. The above equations 
therefore establish an important property of an orthogonal 
system: In an orthogonal two-channel filter bank, all 
filters are obtained from a single prototype filter. 

The lattice parameterization described by Vaidyanathan 
[2] offers the opportunity to design orthogonal wavelet 
filters via unconstrained parameters. Imposing the even 
length filters with L=2N and using polyphase 
decomposition, H0(z) and H1(z) in the analysis filter bank 
are then given by:  
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∑ ݄ଵሺ2݊ሻିݖଶ௡ ൅ ଵିݖ ∑ ݄ଵሺ2݊ ൅ 1ሻିݖଶ௡ேିଵ
௡ୀ଴

ேିଵ
௡ୀ଴

቉

            ൌ ൬ܪ଴଴ሺିݖଶሻ ଶሻିݖ଴ଵሺܪ
ଶሻିݖଵ଴ሺܪ ଶሻ൰ିݖଵଵሺܪ

ᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥ
ቀ 1

                                ଵቁିݖ

   ଶሻ                                                 ሺ2ሻିݖ୮ሺࡴ                                     

     

A paraunitary filter bank with FIR filters of length L=2N 
can be reached by the following parameterization [2, 3]: 

ଶሻିݖ୮ሺࡴ ൌ ൥ෑ൛ࡵ ൅ ሺzିଶ െ 1ሻ࢜୩࢜୩
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Where  

                    ࢜୩ ൌ ൤cos ୩ߠ
sin ୩ߠ

൨, ࢂ଴ ൌ ൤cos ଴ߠ െsin ଴ߠ
sin ଴ߠ cos ଴ߠ

൨ 

The polyphase matrix can be expressed as [3]:   

ଶሻିݖ୮ሺࡴ                 ൌ  ଴                                     (4)ࢂ ୩ሺzିଶሻࢄ

Where  
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∑ ܿ݉ 
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The values of the polynomial coefficients are calculated 
iteratively using the following equation: 
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Where:  

ە
ۖ
۔

ۖ
ۓ ܿଵ

ଵ ൌ sinଶ ,ଵߠ ܿଶ
ଵ ൌ cosଶ ,ଵߠ ݀ଵ

ଵ ൌ െsin ଵߠ cosߠଵ, ݀ଶ
ଵ ൌ sin ଵߠ cosߠଵ

  ଵ݂
ଵ ൌ  െsin ଵߠ cosߠଵ, ଶ݂

ଵ ൌ sin ଵߠ cosߠଵ, ݃ଵ
ଵ ൌ cosଶ ,ଵߠ , ݃ଶ

ଵ ൌ  sinଶ ଵߠ

 ܿ௠ିଵ
௄ିଵ ൌ ݀௠ିଵ

௄ିଵ ൌ ௠݂ିଵ
௄ିଵ ൌ ݃௠ିଵ

௄ିଵ ൌ 0,              for m ൏ 2                          
ܿ௠

௄ିଵ ൌ ݀௠
௄ିଵ ൌ ௠݂

௄ିଵ ൌ ݃௠
௄ିଵ ൌ 0,           for m ൐                              ܭ

 

and K ൌ 2, … , N െ 1 and m ൌ 1, … , K ൅ 1.   

Therefore eq. (4) implies that L=2N sequence hi(n) which 
satisfies the PR condition is parametrized by N free 
parameters ሼθ୩ሽ. 

The regularity constraint is the crucial distinction between 
wavelet transforms and perfect reconstruction filter banks. 
It is related to the number of zeros of H0(z) at z = -1 [1]. In 
image coding, some regularity is desired and higher 
regularity does not appear to yield significant 
improvements for coding quality [1]. The following 
relation provides a constraint on ߠ଴ which guarantees the 
presence of one a zero at ݖ ൌ െ1 in H0(z): 

          ൤ܪ଴ሺݖሻ
ሻ൨ฬݖଵሺܪ

௭ୀିଵ
ൌ ൤ܿݏ݋ ଴ߠ െ݊݅ݏ ଴ߠ

݊݅ݏ ଴ߠ ݏ݋ܿ ଴ߠ
൨ ቂ 1

െ1ቃ ൌ ൤0
 ൨,          (6)ߚ

Where ߚ is a constant. A possible solution is ߠ଴ ൌ െ4/ߨ, 
for a given ߚ ൌ െ√2 [3]. This relation reduces the number 
of free parameters by one. It is shown in [3] that the first 
order regularity condition, yields: 

        
݄଴ሺ2݊ሻ ൌ ଵ

√ଶ
ሺܿ௡ାଵ

ேିଵ െ ݀௡ାଵ
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 ݄଴ሺ2݊ ൅ 1ሻ ൌ ଵ
√ଶ

ሺܿ௡ାଵ
ேିଵ ൅ ݀௡ାଵ

ேିଵሻ,
  n ൌ 0, … , N െ 1       (7) 

So, the filter ܪ଴ሺݖሻ with first order regularity can be 
designed via the following stages: 

1. Generate N-1 angles ሼߠ௞, ݇ ൌ 1, … , ܰ െ 1ሽ, 
2. Compute the polynomial coefficients 

ܿ௠
ேିଵ, ݀௠

ேିଵ , ௠݂
ேିଵ, ݃௠

ேିଵ using eq.(5).  
3. Compute the coefficients of ܪ଴ሺݖሻ using eq.(7). 

Figure 1 - Two channel filter bank 
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After computing the coefficients of the low pass filter 
 ሻ, all the remaining filters of filter banks are deducedݖ଴ሺܪ
from this filter by using eq.(1).  

2.2 Coding gain 
The Coding Gain (CG) measures the energy concentration 
capability of filter banks and is a widely accepted general 
measure of coding performance [4, 5]. By modelling a 
natural image as a one-dimensional Markovian source 
with a correlation factor ρ and by assuming uncorrelated 
quantization errors, Katto and Yasuda [5] derived a filter 
dependent coding gain: 

ሻߩሺܩܥ          ൌ 10 log10 ൭ෑሺܣ௞ܤ௞ሻି ଵ
ఈೖ

ெିଵ

௞ୀ଴

൱                           ሺ8ሻ 

Where:  ܣ௞ ൌ ∑ ∑ ݄௞
′ ሺ݅ሻ݄௞

′
௝௜ ሺ݆ሻߩ|௝ି௜|, ܤ௞ ൌ ∑ ݃௞

′ ሺ݅ሻଶ
௜  

For orthogonal filters we have ܤ௞ ൌ ∑ ݃௞
′ ሺ݅ሻଶ

௜ =1. 
Consequently, we obtain: 

ሻߩሺܩܥ         ൌ 10 log10 ൭ෑሺܣ௞ሻି ଵ
ఈೖ

ெିଵ

௞ୀ଴

൱                                   ሺ9ሻ 

Where ݄௞
′  and ݃௞

′  are the kth analysis and synthesis filter of 
the M channel nonuniform filter bank equivalent to the   
Nd (M= Nd +1) level tree structured filter bank 
respectively (e.g., figure 2), αk is the corresponding 
subsampling ratio, and ρ is the correlation factor.  
In addition, we have:  
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Where: 
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In our work, a correlation factor ρ=0.95 is used and a six-
level dyadic tree-structured subband decomposition is 
adopted here since experimentally this number of levels 
provides the best performance for a wide range of image 
types and is often used in the evaluation of wavelet image 
coding algorithms. 

2.3 Measure of Symmetry 
As mentioned, linear-phase and PR are mutually exclusive 
in the orthonormal filter bank design. But severe phase 
nonlinearities are known to create undesired degradations 
in image and video applications. Therefore, a measure that 
indicates the level of nonlinearity in the filter-phase 
response is included as a parameter in the optimal filter 
design. 
Nonlinear-phase is related to the asymmetry of the 
impulse response. As a measure of filter symmetry, we 
use the group delay flatness. In the case of symmetry, the 
group delay is simply a constant. Otherwise, the mean 
squared Error of the group delay can be used to evaluate 
group delay flatness: 

௚ௗܧ                ൌ
2
ߨ න ሺ߬ሺ߱ሻ െ ߬଴ሻଶ݀߱                            ሺ11ሻ

గ/ଶ

଴

 

Where τ(ω) is the group delay of the lowpass filter, 
defined as –  ,with θ(ω) being the phase of H0(ω) ,߱݀/ߠ݀
the discrete time Fourier transform of h0. Also, τ0 is the 
average group delay over the interval ሾ0, π/2ሿ. The 
integral is evaluated only over the passband interval since 
the group delay behavior over the stop band is of little 
importance. Obviously, given a number of coefficients, 
the more group delay flatness we have, the closer Egd is to 
zero. Eq. (11) can be approximated as a summation:  

௚ௗܧ              ൌ
1
ܭ ෍ ቀ߬ ቀ

ߨ݊
ቁܭ2 െ ߬଴ቁ ଶ

௄ିଵ

௡ୀ଴

                          ሺ12ሻ 

Where we have K points uniformly distributed over 
ሾ0, π/2ሿ and τ0 is the mean value defined as ߬଴ ൌ
ଵ
௄

∑ ߬ ቀ௡గ
ଶ௄

ቁ௄ିଵ
௡ୀ଴ .  

2.4 Frequency selectivity 
The advantage of frequency selectivity in image coding is 
that the coarse quantization into unimportant subbands is 
less expensive, since errors will be confined to the band 
where they occur. A generally used criterion in subband 
coding theory is to make the two analysis filters 
approximate the ideal low-pass and high-pass filters, 
respectively.  
To quantify the frequency selectivity of filter, we define 
the filter bank Transition Band Energy (TBE) as: 

ܧܤܶ               ൌ ׬ ଵሺ߱ሻ|ଶగܪ଴ሺ߱ሻܪ|
଴ dω                           ሺ13ሻ  

Where ܪ௜ሺ݁௝ఠሻ  is the frequency response of filters ܪ௜ሺݖሻ. 

 
Figure 2 - M-band filter banks (M= Nd +1): a) Nd  level 
tree structured filter bank (b) the equivalent M channel 

nonuniform filter bank. 



Using parseval’s relation we obtain:    

ܧܤܶ      ൌ ߨ ෍|݄଴ሺ݊ሻ כ ݄ଵሺ݊ሻ|ଶ                                        ሺ14ሻ
௅ିଵ

௡ୀ଴

  

This function is a measure of the deviation from an ideal 
lowpass and highpass filter pair [4]. If the overlap 
between the filters is zero, which is only possible for ideal 
filters, then the TBE is zero.  

3 A multi-objective Genetic Algorithm 
for the design of filter banks 
A general multi-objective optimization problem consists 
of a number of objectives to be optimized simultaneously 
and is associated with a number of inequality and equality 
constraints. Such a problem can be stated as follows:    

     
ሻ݁ݏ݅݉݅ݔܽ݉ ݎ݋ሺ ݁ݏ݅݉݅݊݅݉   ௜݂ሺݔሻ   ݅ ൌ 0, … , ܰ               

൜ :݋ݐ ݐ݆ܾܿ݁ݑݏ        ௝ܶሺݔሻ,            ݆ ൌ 1, … , ܰ
ܵ௞ሺ݇ሻ ൑ 0,   ݇ ൌ 1, … , ܰ

                     ሺ15ሻ  

 
The fi are the objective functions, N is the number of 
objectives, x is a vector whose p components are the 
design or decision variables, Tj   and Sk are the constraint 
functions. Generally, the objectives under consideration 
conflict with each other, and optimizing a particular 
solution with respect to a single objective can degrade 
results with respect to the other objectives. Generally, it is 
difficult to combine the above objectives both to 
formulate a single objective function. A reasonable 
solution to a multi-objective problem is to investigate a set 
of solutions, each of which satisfies the objectives at an 
acceptable level without being dominated by any other 
solution. Such solutions form a trade-off space and are 
known as the Pareto optimal solutions. 

In a minimization problem, for M objective functions, 
a feasible solution X is dominated by feasible solution Y 
if: 

݅׊ ൌ 1, … , ௜݂ሺܺሻ        ܯ ൒ ௜݂ሺܻሻ ܽ݊݀
݆׌ ൌ 1, … , ௝݂ሺܺሻ        ܯ ൐ ௝݂ሺܻሻ                                 (16) 

A solution is said to be Pareto optimal if it is not 
dominated by any other solution in the solution space. 
Furthermore, that solution is said to be nondominated 
solution. The set of all feasible nondominated solutions 
are called the Pareto optimal set. The corresponding 
objective function in the objective space constitutes a 
Pareto front. 
In our design, we search the angles ሼߠ௞, ݇ ൌ 1, … , ܰ െ 1ሽ 
that maximise the coding gain and minimise the two 
individual objective functions, namely, the transition band 
energy and the group delay error. Our multi-objective 
optimization problem is formulated as follows:  

݉݅݊ఏೖ൫ܱܾ݆݂ଵ, ܱܾ݆ ଶ݂, ܱܾ݆ ଷ݂൯, ܽ݊݀

ە
ۖ
۔

ۖ
ۓ ܱܾ݆ ଵ݂ ൌ ܧܤܶ

ܱܾ݆ ଶ݂ ൌ
1

ௗ஻ܩܥ
ଶ

ܱܾ݆ ଷ݂ ൌ ௚ௗܧ

      ሺ17ሻ 

In our case, A set of angles are treated as chromosomes 
which are optimized by a multi-objective genetic 
algorithm to obtain a set of filter banks that minimise all 
the prescribed objective functions with a satisfactory 
level. This algorithm is based on the NSGA II approach 
[6]. This algorithm is based on the Non-dominated Sorting 
Genetic Algorithm known as NSGAII. The particularity of 
this approach is that, in addition to the Pareto 
nondomination principle used in the conventional multi-
objective genetic algorithms, a crowding operator is used 
to maintain diversity in the population and an elitism 
mechanism is introduced to prevent the loss of better 
solutions once they are found during the genetic evolution. 

4 Experimental results 
Before evaluation of our results, we give some important 
parameters used in our simulation work. In our genetic 
algorithm, real valued angles are used for chromosome 
construction. A simulated binary crossover operator with a 
distribution index of 40 and a probability of 0.9 is used 
[7]. Also, a polynomial mutation of distribution index 20 
and of probability of 0.01 is applied [7]. The population 
size npop is set to 100 and chromosomes of the initial 
population are obtained by randomly generating angles 
between [0, 2π]. The maximum generation (Gmax) is set to 
500 generations. 
In this work, our design method is applied to the design of 
an orthogonal filter bank of length 8 (e.g., N=4). Figure 3 
shows a 3D scatter plot of a set of Pareto optimal solutions 
obtained for the optimized filter bank. The NSGAII 
algorithm produces a set of Pareto optimal solutions 
which are considered as candidates of the final decision 
making solution. To select a final solution ࣂ௢௣௧ from this 
set of solutions, we use the following relation [8]:                                              
௢௣௧ࣂ     ൌ arg minࣂೕ max௜ୀሼଵ,ଶ,ଷሽ ߱௜ሺܱܾ݆ ௜݂൫ࣂ௝൯ െ ప݂ ഥ ሻ        (18) 
We set: 

߱௜ ൌ
1

1
݊௣௢௣

∑ ܱܾ݆ ௜݂ሺࣂ௝ሻ௡೛೚೛
௝ୀଵ

 

Where ࣂ௝, ݆ ൌ 1 … ݊௣௢௣ is the set of generated Pareto 
optimal solutions and   ࢌ ഥ ൌ ൛ ଵ݂ തതത, ଶ݂ തതത, ଷ݂ തതത ൟ is the aspiration 
level. Note that the ࣂ௢௣௧ can be approximately given as 
the one which gives the closest Pareto optimal solution to 
the given aspiration level. By choosing the aspiration level 
(0.05, 0.010, 0.01), we have selected the optimal set as 
θ୭୮୲ ൌ ሼ4.14392765, 2.75161017, 5.1338803ሽ  .  
In our work, it is very interesting to design filter banks 
that can perform well for any test image. Therefore, a 
series of images which have different frequency contents 
has been selected for evaluation of filter banks coding 
performance.  
In experimentation, the SPIHT codec [10] is employed for 
evaluation of the performance of the optimized filter 
banks. Six levels of wavelet decomposition have been 
employed. 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To qualify the effectiveness of our design method, we 
compare the performance of our optimized filter bank 
labeled “Opt4” with that of the Daubechies popular 
orthogonal filter bank “Db4”.  Table 1 presents the PSNR 
values generated by these two filter banks compared for 
different compression ratio where the best result is 
highlighted in each case.  
For the eight test images, our optimal filter bank Opt4 
outperforms the Db4 filter bank in the majority of cases 
and the greatest degree of improvement is occurred for 
compression ratios less than 64:1. For some images such 
as “Finger” and “Target” the improvement is very 
significant, e.g., 0.69 and 1.17dB. In the cases where the 
optimized filter bank is worse, the degradation is very 
small. Statistically, we have obtained in average an 
improvement of 0,20dB. 
To justify the improvement of performance obtained with 
our filter banks, we compare their characteristics to those 
of the filter bank db4 in Table 2. It is clear that our 
optimized filter bank provide a significant improvement in 
term of all considered criteria.  
To assess the compression performance of our optimized 
filter bank, we present an example of a test image which 
has been compressed at rate where the distortion becomes 
visible. Figure 4 shows the image “Barbara” compressed 
at a compression ratio 32:1 for the Db4 filter and Opt4 
filters. For this compression rate, all compressed images 

suffer from ringing artifacts. One can clearly see these 
artifacts surrounding the contours of the images. The 
image compressed using the optimized filter Opt4 has less 
ringing effect in comparison to that of the Db4 filter 
which can be observed in the zoomed portions of such 
images.  

5 Conclusion  
In this work, a method based on genetic algorithms was 
presented for the optimization of filter banks for a lossy 
image coding scheme. The problem of optimization is to 
find a set of filter bank coefficients that satisfy multiple 
objectives which are used to measure the effectiveness of 
filter banks in such scheme. The problem was formulated 
as multi-objective and solved using the NSGAII 
algorithm. From simulation results, it is shown that our 
optimized filter banks outperform significantly the Db4 
filter bank for the majority of tested cases. 
By sacrificing the high degree of regularity of orthogonal 
wavelet filter banks, superior image compression 
performance can be achieved with filters that exhibit good 
energy compaction and near linear phase characteristics.  
While our interest in this work is in orthogonal filter 
banks, because of the availability of orthonormality, 
regularity and perfect reconstruction, the importance of 
orthonormality for image compression should be given 
greater consideration for biorthogonal filter banks. 

Table 1- PSNR (in dB) versus compression ratio 
for our optimized filter bank “Opt4” and the 
Daubechies orthogonal filter bank “Db4”. 

Compression ratios Filter 
banks Images 

8:1 16 :1 32 :1 64 : 1128:1 
40,1836,59 33,24 30,2627,51 Db4 

Lena 
40,2136,66 33,34 30,3427,53 Opt4 
35,8730,81 27,41 24,4823,44 Db4 

Barbara 
36,2131,09 27,58 24,4923,41 Opt4 
35,9732,36 29,59 28,0326,20 Db4 

Goldhill 
36,0532,46 29,71 28,0126,14 Opt4 
30,0126,58 23,58 21,9520,18 Db4 

Finger 
30,7027,02 23,79 22,0520,19 Opt4 
30,4625,44 21,95 19,3518,19 Db4 

Bike 
30,5625,56 22,02 19,3718,22 Opt4 
35,7627,79 21,93 17,7116,49 Db4 

Target 
36,9328,10 22,65 18,0216,69 Opt4 
27,2424,00 21,45 20,0218,73 Db4 

Straw 
27,4724,16 21,48 19,9918,71 Opt4 
31,8927,74 24,82 23,0621,19 Db4 

Aerial 
32,1327,97 25,37 23,2521,31 Opt4 

 Table 2- Comparison between Characteristics  
of  filter banks 

 TBE CGdB Egd 

db4 0.8 9.664 0.143 
FBopt 0.681 9.738 0.0289 
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Figure 3 - 3-D scatter plot of the Pareto optimal 
solutions obtained by using the NSGAII. 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
References 

[1] M. Vetterli and J.  Kovačević. Wavelet and subband 
coding. Englewood Cliffs, New Jersey, 1995. 

[2] P. P. Vaidyanathan. Multirate Systems and Filter 
Banks. Englewood Cliffs, NJ: Prentice-Hall, 1993. 

[3] L. K. Shark, C. Yu. Design of optimal shift-invariant 
orthonormal wavelet filter banks via genetic 
algorithm. Journal of signal processing, 83 (2003) 
2579-2591, Elsevier, 2003. 

[4] K. Deb, A. Pratab, S. Agarwal, and T. Meyarivan. A 
fast and elitist multiobjective genetic algorithm: 
NSGA-II. IEEE Trans. Evol. Comput., 6(2):182-197, 
April 2002. 

[5] J. Katto and Y. Yasuda. Performance evaluation of 
subband coding and optimization of its filter 
coefficients. Proc. SPIE Symposium on Visual 
Comm. and Image Process., 1605, pages 95-106, 
1991. 

[6]  M. Lightstone, E. Majani, and S. K. Mitra, Low bit-
rate design considerations for wavelet-based image 

coding. Multidimensional Systems and Signal 
Processing, 1997 (8):111-128, 1997. 

[7] M. M. Raghuwanshi and O. G. Kakde. Survey on 
multiobjective evolutionary and real coded genetic 
algorithms. In proc. of the 8th Asia Pacific 
Symposium on Intelligent and Evolutionary Systems, 
pages 150-161, 2004. 

[8] Y.B. Yun, H. Nakayama, M. Arakawa. Multiple 
criteria decision making with generalized DEA and 
an aspiration level method. European Journal of 
Operational Research, 158 (2004) 697-706, Elsevier, 
2003. 

[9] M. Eskicioglu and P. S. Fisher. Image Quality 
Measures and Their Performance. IEEE Trans. 
Comm., 43(12): 2959-2965, December 1995. 

[10] A. Said and W.A. Pearlman. A new, fast, efficient 
image codec based on set partitioning in hierarehical 
trees.  IEEE Trans. Circuits Syst. Video Technol., 
6(3): 243-250, June 1996. 

(b) 4×zoom 

Figure 4 - Image Barbara compressed at 32:1 with SPIHT: (a) Db4 (b) Opt4 
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